格鲁克传感器
科普,AGC简介
AGC控制的目的是将轧机出口带钢的厚度尽可能地控制在要求的目标值。因此为获得最好的控制精度,设置了多种控制器和补偿环节,这些控制器和补偿环节分别使用由不同测量仪表或传感器检测出的过程参数。
AGC控制的输出,始终是作为压下缸控制器基准值的偏置(或称作补偿值)施加到APC控制器。
(1)反馈控制
带钢在轧机出口的厚度由安装在轧机出口的测厚仪进行测量。反馈控制器将比较基准值和测量值之间的偏差,并将此偏差根据轧机模数、轧件模数以及厚度方程转换成位置控制器的偏置信号,对位置控制进行补偿。
由于轧机出口测厚仪和轧机之间有一定距离,测量信号是滞后的,因此只可能采用调节速度较低的积分控制器来校正厚度的偏差,也就是说,反馈控制只能校正长期的厚度偏差。
(2)前馈控制
前馈控制比较由轧机入口测厚仪测量的厚度值和设定的带钢厚度值之间的偏差,并对偏差信号从测厚仪到辊缝进行跟踪。即将偏差信号保存到缓冲区,并在该偏差信号的测量点到达辊缝时取出并转换成位置偏置,通过对辊缝大小的调节实现对带钢入口厚度偏差的校正。
为将入口带钢偏差信号精确地从入口测厚仪位置跟踪到辊缝位置,需要考虑以下因素:
测厚仪的响应时间
带钢从测厚仪到辊缝之间的移动时间
液压伺服缸的位置调节时间
前馈控制同样根据轧机模数和轧件模数以及厚度方程将偏差信号转换成合适的位置偏置。
(3)金属秒流量控制
根据轧制过程中金属秒流量相等的原理,预测轧机出口带钢的厚度,并与设定的出口厚度比较,将其差值转换成合适的辊缝控制器的偏置。
(4)弯辊力补偿
弯辊力的变化将引起辊缝位置和轧制力的变化。因此需要根据轧机的模数,将弯辊力的影响转换成辊缝控制基准值的偏置。
(5)轧辊偏心补偿
轧辊的偏心将引起带钢厚度周期性的变化。轧辊偏心的测量借助于轧机入出口的测厚仪。
同样,轧辊偏心的补偿值将转换成辊缝控制基准值的偏置。
(6)恒张力控制
AGC控制的输出将使轧机辊缝位置处于变化之中,辊缝位置的不断调节将引起带钢张力的波动,因此将对轧机入、出口张力进行补偿,以保持张力稳定。
实战,AGC常见七大故障解析
(1)位置超差
更换轧机的上下支撑辊,开机零调时,操作侧和传动侧之间出现位置偏差过大报警,导致零调不成功;检查机械方面液压缸各腔压力正常,动作正常,活塞能运行到上下极限位置且无渗漏,电气检查位置传感器和控制模块都没发现问题,工艺方面检查工作辊和支撑辊的直径及辊型偏差,偏差都在合格范围之内,不应该造成位置超差。最后三方决定重新更换支撑辊,拉出上支撑辊时发现在上支撑辊轴承座与AGC液压缸的接触面之间有一块碎布,清理干净,重新回装后,故障消除。
引起这个故障的原因是在支撑辊轴承座与AGC液压缸有一定厚度的杂质,引起位置测量出现偏差;而操作工未按标准化作业,未仔细检查支撑辊就上机才导致了这个故障。
(2)位置控制故障
液压压下(AGC)装置位置控制主要故障有:传感器故障,包括位置、油缸油压、轧制力等传感器故障。液压压下实际值(任一侧)到极限位,压下封锁,轧机停止工作。
同一油缸两侧位置差4mm,可能:位置传感器故障。
两油压缸传感器偏差2.3mm,压下封锁,可能:位移传感器故障、伺服阀或油缸泄漏、偏差或零调不准。
AGC液压控制系统由两套独立且完全相同液压位置伺服系统。设定同一值,正常工作时,两套控制系统按照完全相同的指令控制压下油缸上下移动。采用时间段△T信号进行平滑滤波,当两油缸位置传感器位置差
S1-S2
2.3mm,即必有1套液压位置伺服系统存在故障,结合伺服系统状态分析,如驱动电流变化趋势可对故障进行定位。一般来说,趋势变化过快的系统更有可能存在故障。
轧制力40MN,否则过载,压下封锁,液压系统卸荷。
当两侧压力传感器测量值超差,可能:压力传感器故障。
(3)无法调零
在生产中的正常更换工作辊,进行零调时,在辊缝靠近时,无法达到零位,以至无法完成调零程序,机械及电气方面都无事故报警,查看现场,发现液压缸在最大行程位置,于是建议再次更换直径较大的工作辊,之后故障消除。
引起这个故障的原因是工作辊的辊径较小,辊缝超过AGC油缸的行程,解决的办法有a)更换合适的轧辊;b)调整合适的垫板。
(4)液压阀故障
液压阀故障,主要有:预控限压阀在工作时没有处于溢流状态,检查:溢流阀实际状态,溢流压力设定值,是否附合实际工况(如过低)。轧制时,油缸工作腔压力应基本满足:P1xS1P2xS2+F(对应侧轧制力)。卸荷状态,油缸工作腔压力,背压为40bar。
(5)AGC液压缸不动作
故障出现后,马上检查工作压力,测压点检查的压力过低,现场有液压油流动的声音,这有两个可能:一是伺服阀工作异常或控制信号异常,二是安全溢流阀有问题。考虑到伺服阀有两个,设置一个为主工作、另一个为辅助工作状态,两个伺服阀同时出现故障的可能性很小,我们先检查溢流阀,更换了一个新的溢流阀之后,系统恢复正常。
解体这个溢流阀,发现它的先导阀芯被杂质卡在常开位置,造成系统一直在溢流泄压,所以系统无法动作,这是液压系统被污染造成的故障。
(6)动作故障
BA(基础自动化)给出控制逻辑信号,而实际电磁阀不动作,可能故障:电气断线、或电磁阀卡死等,整个伺服系统无法工作。
电磁阀(逻辑功能阀)开关状态与测压点压力关系不符合,可能故障:电气断线;或电磁阀卡死。
(7)零偏电流I与相关故障
当零偏电流小于满量程10%(约3mA)范围内变化时,伺服阀正常;当零偏电流大于满量程30%时,伺服阀应更换。
零偏电流I逐步增大,可能故障:伺服阀或压下油缸寿命性故障,如:磨损、泄漏、电气老化等,但控制性能基本达到要求,可能使控制位置略有漂移等现象。
零偏电流I突然增大,可能故障:伺服阀突发性故障、或油缸卡死。如反馈杆断裂、力矩马达卡滞、小球脱落、节流孔堵塞等,将使伺服系统失控。根据电流I、油缸压力P、伺服阀B腔压力、油缸位置S等参量进行故障定位。其特征:驱动电流I突然增大(幅度很大);油缸位置偏向一端无法控制;伺服阀电流I变化,而B腔压力不变,可能故障:电气断线、或伺服阀故障、或液控制单向阀故障(故障率很低)。B腔压力随伺服阀电流I变化,可能故障:伺服阀故障、或液压压下油缸故障。
相关链接
轧钢之家“控制”合集
轧钢之家AGC合集
轧钢之家部钢铁专辑
声明:来源:新液压